2019 Consumer Confidence Report for Public Water System CITY OF RENO

This is your water quality report for January 1 to December 31, 2019

For more information regarding this report contact:

CITY OF RENO provides surface water from LAMAR COUNTY WATER SUPPLY.

Name Tricia Smith

Phone 903-785-6581

llamar al telefono (903)785-6581. Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de

Definitions and Abbreviations

Action Level:

Definitions and Abbreviations The following tables contain scientific terms and measures, some of which may require explanation

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety

Regulatory compliance with some MCLs are based on running annual average of monthly samples

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our

Level 2 Assessment:

Maximum Contaminant Level or MCL: and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred

Maximum Contaminant Level Goal or MCLG:

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety,

Maximum residual disinfectant level or MRDL: contaminants. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

million fibers per liter (a measure of asbestos)

millirems per year (a measure of radiation absorbed by the body)

not applicable

mrem: na:

MFL

nephelometric turbidity units (a measure of turbidity)

picocuries per liter (a measure of radioactivity)

pCi/L OLN

Definitions and Abbreviations

ppm: ppb: ppt ppq parts per quadrillion, or picograms per liter (pg/L milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water

parts per trillion, or nanograms per liter (ng/L)

Information about your Drinking Water

from human activity. or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land

necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not

Contaminants that may be present in source water include

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- and gas production, mining, or farming. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses
- from gas stations, urban storm water runoff, and septic systems. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

regulations establish limits for contaminants in bottled water which must provide the same protection for public health In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA

information on taste, odor, or color of drinking water, please contact the system's business office Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more

steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Hotline (800-426-You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or

N

Information about Source Water

CITY OF RENO purchases water from LAMAR COUNTY WATER SUPPLY DISTRICT. LAMAR COUNTY WATER SUPPLY DISTRICT provides purchase surface water from LAMAR COUNTY WATER SUPPLY located in PARIS TEXAS, LAMAR COUNTY.

Regulated Contaminants	Levels	Unit Abbrev.	Units	MCL
Atrazine	0.400	Ug/L	<micrograms liter<="" td=""><td>3ug/L</td></micrograms>	3ug/L
Fluorida	1 000			(
r Inviting	1.030	Mg/L	<milligrams liter<="" td=""><td>4 mg/L</td></milligrams>	4 mg/L
Nitrate*	0.060			
Transport of the state of the s	0.232	Mg/L	<milligrams liter<="" td=""><td>10 mg/L</td></milligrams>	10 mg/L
Barium	0.036	Mo/I	/millianomo/Titon	
		T. G. W.	<miligrams liter<="" td=""><td>2 mg/L</td></miligrams>	2 mg/L

system contact Jerry Reavis, 903-785-6581. source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	Action Level (AL) 90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	09/06/2018	1.3	1.3	0.174	0	ppm	z	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing
Lead	09/06/2018	0	15	1.76	0	ppb	Z	Corrosion of household plumbing systems; Erosion of natural deposits.

2019 Water Quality Test Results

Disinfection By-Products

Collection Date

W

* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

of product of armitting water distillention.								
By-product of drinking water disinfection	2	agg	č	INO ROAL TOT LITE	1/:0 TOO	7 +		
	:		8	No coal for the	47 5 - 100	74	2019	lotal irinaiomethanes (TTHM)
								1

The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year'

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2019	0.243	0.24 - 0.243	10	10	ppm	z	Runoff from fertilizer use; Leaching from septic tanks

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Violation (Y/N) Source in Drinking Water
CHLORAMINE	2019	2.09	.05-3.2	4	4	ppm	z	Water additive used to control microbes.
Callifornia Bondonia								

Coliform Bacteria

0	Maximum contaminant level goal
I positive monthly sample	Total coliform Maximum Contaminant Level
0	Highest Number of Positive
Fecal Coliform or E Coli MCL: A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or E Coli positive.	Fecal Coliform or E Coli Maximum Contaminant Level
0	Total No. of E Coli or Fecal Coliform Samples
Z	Violation
Naturally present in the environment.	Likely Source of Contamination

Violations

Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

Violation Type	Violation Begin	Violation End	Violation Explanation
LEAD CONSUMER NOTICE (LCR)	12/30/2018	03/18/2019	We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were

Lowest monthly % meeting limit Highest single measurement Level Detected 0.42 NTU 98% Limit (Treatment 0.3 NTU 1 NTU Techniquel Violation z Z Soil runoff Soil runoff. **Likely Source of Contamination**

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.